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Abstract—As software evolves, test suite augmentation techniques

may be used to identify which part of the program needs to be tested

due to code changes and how to generate these new test cases for

regression testing. However, existing techniques focus exclusively on

sequential software, without considering concurrent software in which

multiple threads may interleave with each other during the execution

and thus lead to a combinatorial explosion. To fill the gap, we propose

ConTesa, the first test suite augmentation tool for concurrent software.

The goal is to generate new test cases capable of exercising both code

changes and the thread interleavings affected by these code changes.

At the center of ConTesa is a two-pronged approach. First, it judiciously

reuses the current test inputs while amplifying their interleaving cover-

age using random thread schedules. Then, it leverages an incremental

symbolic execution technique to generate more test inputs and inter-

leavings, to cover the new concurrency-related program behaviors. We

have implemented ConTesa and evaluated it on a set of real-world

multithreaded Linux applications. Our results show that it can achieve a

significantly high interleaving coverage and reveal more bugs than state-

of-the-art testing techniques.

1 INTRODUCTION

Regression testing is a widely-used technique to re-validate
evolving software. Typically, engineers begin by executing
the existing test cases, to which various techniques for test
selection [28], [42], [47], [48], [51] and test case prioritiza-
tion [15], [16], [32], [35], [49], [55], [66] may be used, to
reduce the testing cost. However, existing test cases may
not be sufficient for covering the new or modified soft-
ware code and related program behaviors. To address this
problem, regression test suite augmentation (RTA) is used to
identify where new test cases are needed and then create
these test cases [8], [50], [56], [65]. However, prior work
on RTA focuses exclusively on sequential software; it does
not consider issues related to thread interleavings or have
the ability to effectively cover concurrency-related new pro-
gram behaviors.

Unlike sequential software, for which RTA has to con-
sider the addition of test inputs only, concurrent software
requires RTA to generate both test inputs and thread inter-
leavings so as to cover the new concurrency behaviors of
the modified code. This is often difficult because in real-
world applications, the thread interleaving space may be
too large to explore exhaustively [36]. Although there is a
large body of work on mitigating this interleaving explosion
problem, including techniques based on static analysis [18],
[29], [33], [39], [62], [64], systematic exploration [4], [11],

[38], [52], [53], [61], [63], and schedule generation [41], [46],
they all target a single program version and thus do not
directly benefit RTA. In RTA, one must consider two closely-
related program versions. Terragni et al. [57] have proposed
a technique in the context of regression testing for exploring
alternative thread interleavings pertinent to the affected
shared-variable (SV ) accesses, and showed that only 1%
of SV accesses in real applications are affected. However,
their technique relies exclusively on the existing test inputs;
it cannot generate new test inputs.

In this paper, we present ConTesa, the first RTA technique
for concurrent software to simultaneously generate new test
inputs and thread interleaving schedules. To leverage the
existing test inputs while minimizing the cost of generating
new test inputs, ConTesa uses a two-pronged approach. In
the first phase, ConTesa takes the two program versions P

and P ′ and computes a set IS∆ of interleaving schedules
that need to be covered. To compute these coverage targets,
we consider the global operations (e.g., shared-variable ac-
cesses and synchronizations) affected by code changes and
select interleavings to cover each of them at least once.
Since exhaustively covering all interleavings is practically
infeasible, we use a modest coverage criterion: the set of
selected interleavings must be able to cover a predefined set
of inter-thread definition-use (DU) access patterns.

In the second phase, ConTesa generates new test inputs to
activate the predefined set of DU pairs. Prior to doing that,
however, ConTesa utilizes the existing test inputs together
with random schedules to quickly trim down the coverage
targets in IS∆. Thus, new test inputs are generated only
for coverage targets that cannot be reached by existing test
inputs. For each coverage target left in IS∆, i.e., a DU pair,
ConTesa uses an SMT solver-based symbolic execution pro-
cedure to compute the new test input, as well as the thread
schedule under which the coverage of program version P ′

can be increased. This iterative process of generating new
test inputs and thread schedules repeats until the entire set
IS∆ is covered or a predefined time limit is reached.

To evaluate ConTesa, we conducted experiments on the
regression testing of 13 real-world C/C++ applications, in-
cluding four large programs with 95K to 154K lines of code.
We compare ConTesa with three state-of-the-art techniques
for testing multithreaded software. The first technique is
Conc-ise [21], an incremental symbolic execution tool for
exploring the affected interleaving space. Conc-ise does not
reuse existing test cases to guide the exploration; in contrast,
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it generates all test inputs and thread interleavings from
scratch. The second technique is Con2colic [17], a technique
for systematically generating test inputs and thread sched-
ules via symbolic execution of the new program version. The
third technique is ReConTest [57], a regression testing tool
that explores the interleaving space using only existing test
inputs. More details on comparing ConTesa to these three
baseline techniques are discussed in Section 2.3.

Our results show ConTesa outperforms all three tech-
niques in terms of the test coverage, fault detection rate, and
testing time. Specifically, compared to the first approach,
ConTesa detected 18.1% more faults, improved the coverage
by 4.5%, and was up to 1.9 times faster; compared to
the second approach, ConTesa detected 44.4% more faults,
improved the coverage by 4.9%, and was up to 39.3 times
faster; compared to the third approach, ConTesa was three
times slower but detected 85.7% more faults and improved
the coverage by 52.5%.

One key benefit of ConTesa is the reuse of existing test
inputs together with random schedules. This is because
existing test cases provide a rich source of data on po-
tential inputs and code reachability, which can speed up
the exploration of the affected program space. Compared
to the three baseline approaches, ConTesa performs better
especially on larger programs. Moreover, existing test cases
are naturally available as a starting point in the regression
testing context. There are dynamic analysis techniques for
detecting concurrency faults that utilize existing test cases,
which can be combined with ConTesa to further improve
fault detection effectiveness.

In summary, this paper makes the following contribu-
tions:

• We propose the first regression test augmentation (RTA)
tool for concurrent software, capable of utilizing ex-
isting test cases as well as generating new test cases
(inputs and thread schedules).

• We conduct controlled experiments on real applications
to evaluate different input and interleaving generation
strategies and demonstrate the effectiveness of the pro-
posed technique.

In the remainder of this paper, we first introduce the
technical background and problem statement together with
a motivating example in Section 2. Then, we present the
overall algorithm of ConTesa in Section 3, followed by de-
tailed descriptions of the test augmentation algorithm in
Section 4. We present the empirical study and results in
Sections 5 and 6, respectively, followed by a discussion of
our observations in Section 7. We present the related work
in Section 8. Finally, we give our conclusions in Section 9.

2 BACKGROUND AND MOTIVATION

We first define the test suite augmentation problem and then
illustrate the technical challenges in the context of concur-
rent software using a motivating example.

2.1 Test Suite Augmentation

Let P be a program, P ′ be a modified version of P , T be the
existing test suite1 for P , and T ′ be the new test suite for

1. A test suite is a collection of test inputs.

Thr1 :

1.if (y < 0) {
2. mutex_lock(&lk);
3. if (x > 3) {

...
++4. mutex_unlock(&lk);
5. y = x + 1;
6. assert (y != 0);
7. }
8. else {

...
++9. mutex_unlock(&lk);
10. }

--11. mutex_unlock(&lk);
12. }
13.if ( z < 3) {
...

14. }

Thr2 :

15. mutex_lock(&lk);
16. x = y - 1;
17. mutex_unlock(&lk);

...
18. mutex_lock(&lk);
19. if (x < 3 && y == -1)
20. y = y + 1;
21. mutex_unlock(&lk);

Fig. 1: A program with deleted (“--”) and added (“++”) lines.

P ′. Our goal is to compute T ′ when given P , P ′, and T .

In regression testing, engineers often begin by reusing
T . Since reusing all test cases (i.e., the retest-all approach) is
expensive, regression test selection (RTS) attempts to select,
from T , a subset T ′ ⊆ T of test cases that are important,
while omitting test cases that are not as important [28], [42],
[47], [48], [51]. Similarly, regression test prioritization (RTP)
attempts to reorder the existing test cases in T with the goal
of more quickly reaching the testing objectives. The most
obvious testing objective is revealing the faults [15], [16],
[32], [35], [49], [55], [66].

Clearly, both RTS and RTP are concerned with the reuse
of test cases in T . In contrast, regression test augmentation
(RTA), which is the focus of this paper, is concerned with
1) identifying the affected entities in the software code (e.g.,
portions of P ′ or its specification for which new test cases
are needed), 2) checking whether existing test suites are
adequate for covering the affected entities , and 3) creating
new test cases to exercise these affected but not-yet-covered
entities [8], [50], [56], [65].

At the center of RTS, RTP, as well as RTA is a static pro-
gram analysis named change-impact analysis (CIA). It is used
to analyze the program models (e.g., control-flow graphs)
of both P and P ′ and determine the code changes as well
as program entities affected by these code changes. Thus,
CIA serves as a foundation for performing the various steps
of regression testing. In principle, only program entities
that are involved in the code changes or affected by these
changes need to be re-tested.

2.2 A Motivating Example

We use the concurrent program in Fig. 1 to illustrate the
main challenges in RTA. The program is a simplified and
slightly modified version of the code snippet from Aget.
The program has two threads Thr1 and Thr2 as well as
global variables x, y, and z. Both the original program P

and the modified program P ′ are shown in the figure, where
deleted and added lines are denoted by “--” and “++”,
respectively. The three lines of code changes from P to P ′

introduce a concurrency bug: since the execution of Lines 5-
6 is no longer atomic, the value of y written at Line 5 may
be modified by the other thread via the write operation at
Line 20, leading to an assertion failure. Since this is a newly
added program behavior – it exists in P ′ but not in P –
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Although CONC-ISE [21] can leverage two program ver-
sions P and P ′ to reduce the cost of exploring both program
path and thread schedules in concurrent programs, it does
not reuse existing test cases in T to guide the symbolic
execution or schedule exploration. For the example of Fig. 1,
CONC-ISE would invoke symbolic execution four times to
exercise the affected DU pairs. In contrast, a main advantage
of ConTesa is to leverage the existing test cases in T (for P )
to speed up the testing of P ′.

3 OVERALL APPROACH

Fig. 2 shows the overall flow of ConTesa, which consists
of four main components: ImpAnalyzer for conducting
change-impact analysis, InvSelector for selecting in-
terleaving targets, SchedExplorer for exploring thread
schedules, and TestAugmentor for generating test inputs.

Given the set C ′ of code changes made to the original
program P to produce the new program P ′, ImpAnalyzer
first computes a list L′

SV of program locations involving
shared variable accesses. It then identifies a subset L′

SV aff
⊆

L′
SV of these variables that may be affected by C ′. ConTesa

focuses on identifying the affected shared variables because
the triggering of concurrency bugs considered in this work
depends on the exposure of erroneous inter-thread memory
dependencies. Next, InvSelector iterates through L′

SV aff

and identifies the shared variables that match a given access
pattern PTinv . By default, our access pattern is the DU pair,
meaning InvSelector produces a list of impacted DU
pairs, which form the interleaving schedule targets in IS∆.

Next, ConTesa generates either new thread schedules or
new test inputs to cover the DU pairs in IS∆. To avoid rep-
etition, it first applies each existing test input together with
a random schedule, and then invokes SchedExplorer to
seek alternative interleavings. At the end of this process, if
some DU pairs in IS∆ have not been covered, it invokes
TestAugmentor.

Inside TestAugmentor, ConTesa first executes the pro-
gram P ′ using an existing test input that reaches the
branches of the affected SV in an not-yet-covered DU pair.
Then, it performs symbolic execution of all local paths (with
a loop bound 10) within the threads, as well as the global
path across threads. Finally, it uses the path and thread
constraints gathered along the execution to generate a new
data input and a new interleaving schedule, to drive the
execution along a different path on a subsequent iteration
(this is accomplished by negating a predicate in the path
condition constraint during symbolic execution).

In general, SchedExplorer and TestAugmentor

must be applied iteratively until all DU pairs in IS∆ are
covered, or a predefined time limit is reached.

In the subsequent sections, we describe each of the four
components in more detail.

3.1 Concurrent Change-Impact Analysis

Identifying program entities affected by changes is a key
step in ConTesa. ImpAnalyzer is designed to conduct
this change-impact analysis. To handle concurrent software,
ImpAnalyzer extends the change-impact analysis proce-
dure of SimRT [69] by considering not only standard syn-
chronizations (e.g., locks) but also ad-hoc synchronizations

(e.g., busy-waiting over loops using flags). In SimRT, a
concurrency element (e.g., shared variable) is regarded as
impacted only when it is changed, or all standard syn-
chronizations it depends on are changed. However, this
approach cannot detect elements affected by thread-local
changes or changes involving ad-hoc synchronizations. Con-
Tesa addresses both issues.

Specifically, ImpAnalyzer first produces a list L′
SV of

variables that may be accessed by multiple threads in P ′.
These variables are computed using the shared variable
detection algorithm of Kahlon et al. [31], where each access
is labeled as either “write (def)” or “read (use)” through our
analysis. Next, ImpAnalyzer takes the program P ′ and
L′
SV to compute a list L′

SV aff
⊆ L′

SV of affected shared
variables in two steps.

In the first step, ImpAnalyzer computes a change set
(i.e., a set of changed instructions), denoted by ∆diff , using
a lightweight diff utility. Since the results reported by the
standard diff command in Linux may generate too many
false positives (e.g., changing a variable name from x to y

would cause all lines referring to x as changed even if they
are structurally the same), we build the abstract syntax trees
(ASTs) of both P and P ′ and compare them structurally: we
traverse them in parallel to collect type and name mappings.
Thus, two variables are considered equal if we encounter
them in the same syntactic position reported by the diff tool.
The ultimate changes are added to the change set C .

In the second step, ImpAnalyzer computes, for each
changed instruction c ∈ C , the shared variables affected by
c and adds them into L′

SV aff
. Thus, we perform an intra-

thread forward program slicing to identify all instructions,
I , that depend on c, and add the shared variables in I to
L′
SV aff

because they may affect the interleaving space of P ′.
Note that I∪c may contain local variables, shared variables,
as well as synchronizations. Next, for each synchronization
s ∈ I ∪ c, we compute all shared variables protected by s,
and add them to L′

SV aff
.

If s is a mutex operation, we record its synchronization
context (i.e., locksets used to protect the shared variables).
If the locksets on the same SV are different across two
program versions, the SV is affected and thus added to
L′
SV aff

. In our static analysis, the lockset of a shared variable
SV is the set of locks that may be held along any path
leading to the access of SV . We use the context-sensitive
lockset analysis in [30] to compute the lockset for each SV

access. Specifically, we construct a concurrent control flow
graph (CCFG) [30] and uses backward slicing to capture
all locks that may reach the access of the shared variable.
The lock sets computed by our static analysis may induce
false positives due to infeasible paths, which fortunately
is eliminated by the subsequent dynamic phase of the test
augmentation. For the program in Fig. 1, the lockset for
the variables (x and y) at Lines 5-6 are changed from {lk}
to {φ}, so these variables are affected and thus added to
L′
SV aff

.

If s is a wait-signal synchronization, all SV s that are
control-dependent on the wait operation and all SV s that
can reach the signal operation are affected and thus added
to L′

SV aff
.

4
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3.2 Identifying the Impacted Interleaving Space

The impacted interleaving space, IS∆, is computed inside
InvSelector by selecting thread schedules containing at
least one affected variable in L′

SV aff
. Since the number of

thread interleavings may grow exponentially as the length
of the execution increases, we adopt a more practical cov-
erage criterion. The goal is to help select a small number of
representative thread interleavings.

The current implementation of ConTesa employs an inter-
thread def-use (DU) criterion [36], which is satisfied if and
only if a write w in one thread happens before a read r

in another thread and there is no other write to the same
variable between them. Each DU pair containing at least
one affected SV is considered impacted and thus added to
IS∆. During test augmentation, we leverage new symbolic
execution algorithms to efficiently generate test inputs as
well as thread schedules to cover all the DU pairs in IS∆.

4 THE MAIN TEST AUGMENTATION ALGORITHM

The test augmentation procedure is shown in Algorithm 1,
which contains two subroutines SchedExplorer and
TestAugmentor. It begins with an initial set T of test
inputs and a set IS∆ of DU pairs serving as the coverage
target TG (line 1). During the iterative process, we first
invoke SchedExplorer to execute all test inputs in T

with random thread schedules and check if any DU pair
dup ∈ TG is covered (Line 4). ConTesa could also be used
in conjunction with SimRT [69] or Recontest [58] to speed
up the exploration. For each remaining DU pair that is
not covered, we invoke TestAugmentor to generate a new
input tnew together with a thread schedule snew (Line 6)
capable of covering dup. If tnew and snew are successfully
computed and executed on P ′, the corresponding DU pair
is covered and tnew is added to the new test suite Tnew

(Lines 7-10).
The order in which events in IS∆ are considered may

affect the performance of ConTesa. Here, SV∆ denotes all
shared variables in IS∆ and each shared variable in SV∆

is a single coverage target. We have investigated the use
of a breadth-first search (BFS) order of shared variables in
SV∆. Our conjecture is that, by guiding ConTesa toward
paths that explore the most not-yet-covered targets in the
BFS order may speed up the augmentation process, because
test cases generated earlier in process may cover shared
variables occurring later in process, thus obviating the need
to consider them again. It may also maximize the number
of interleavings to be explored per test input, thus reducing
the symbolic execution cost for generating more test inputs
– see our detailed discussions in Section 7.

The manner in which test inputs are used also affects
the performance of ConTesa. In this work, we allow for the
possibility of adding newly generated test inputs back into
our set of available test inputs. Specifically, if the Boolean
flag UseNew is set to true, the procedure in Algorithm 1
will combine newly generated test inputs with original test
inputs (Lines 13-15), and this combined T will be used for
the next iteration of our algorithm. By default, UseNew is
set to true. We shall discuss the impact of this option in more
detail in Section 7.

Algorithm 1 ConTesa main augmentation algorithm

Input: P ′, T , IS∆

Output: Tnew

1: TG = IS∆

2: while TG 6= φ and T ime ≤ Limit do
3: for each dup ∈ TG do
4: SchedExplorer(P ′, T , dup)
5: if dup is not covered then
6: <tnew , snew> = TestAugmentor(P ′, T , dup)
7: success = Execute(P ′, tnew , snew)
8: if success is true then
9: Tnew = Tnew ∪ tnew

10: end if
11: end if
12: update(TG)
13: if UseNew then
14: T = Tnew ∪ T
15: end if
16: end for
17: end while

4.1 Discovering New Interleaving Space

ConTesa invokes SchedExplorer to explore the interleav-
ing space affected by code changes using existing test in-
puts, as shown at Line 4 of Algorithm 1. If a coverage target
can be reached, there is no need to generate new test inputs.
Here, SchedExplorer exercises each test input t ∈ T on P ′

with a random schedule, which leads to a concrete execution
TR(t). If a target DU pair dup is exercised, TG is updated
(Line 12) to reflect that dup is covered by TR(t).

If a dup is not covered but its flipped pair (<read,
write>) is exercised by TR(t), we try to generate alternative
interleavings to cover dup. Toward this end, we construct a
partial order graph (POG) [24], which captures the ordering
of concurrent events in TR(t). Let (V,E) be the POG, where
V is the set of nodes corresponding to the events in TR(t)
and E is the set of edges between these nodes. Each edge
(ei, ej) ∈ E represents a must-happen-before order between
ei and ej . To generate new thread schedules, we iteratively
pick a pair Ep = (Rm,Wm), where Rm is a read and Wm

is a write with respect to the same memory location m. If
(Wm, Rm) ∈ dup, we try to generate a new interleaving
by flipping the two events in Ep while respecting the other
ordering constraints in the POG. In other words, derives the
position of the legal flip by analyzing the POG.

To ensure the new thread schedule is feasible, we replay
it on P ′. If we can execute the program P ′ under the test
input and new thread schedule, we update TG to record
that the particular dup is covered. However, if such a thread
schedule cannot be generated, e.g., due to violations of some
ordering constraints in the POG or the infeasibility of the
generated schedule, the dup is not-yet-covered.

It is also possible that executing the new thread schedule
leads to deadlock when the POG does not precisely model
all synchronization primitives (e.g., some ad hoc synchro-
nizations written using shared variables). To address this
problem, ConTesa sets a timeout value (i.e., 30 seconds) just
in case that a deadlock occurs.

For the example program in Fig. 1, if the to-be-covered
DU pair is <(16, w(x)), (3, r(x))>, but the related order <(3,
r(x)), (16, w(x))> has been exercised by the execution trace
TR(t), we try to generate an alternative thread schedule by
flipping the order of events (3, r(x)) and (16, w(x)). What
is interesting is that there can be multiple ways to execute
(3, r(x)) after (16, w(x)), some of which are better than the

5
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Algorithm 2 ConTesa input augmentation: TestAugmentor

Input: P ′, T , an uncovered DU pair dup
Output: NT

1: Tcur = T // a set of the current test inputs
2: NT = φ // a set of all new test inputs generated
3: while NTcur 6= φ do
4: NTcur = φ //a set of newly generated test inputs in the

current execution of line 3 to line 25
5: if dup contains at least one uncovered sv then
6: Tdup = {all test inputs in Tcur that reach bdup.w or bdup.r}
7: else if isFlip(dup) is false then
8: Tdup = {all test inputs in Tcur that reach the unflipped pair}
9: end if

10: TRsym = {all symbolic traces obtained from executing Tdup}
11: for each st ∈ TRsym do
12: φpcw = DelPred (pcdup.w , neg)
13: φpcr = DelPred (pcdup.r , neg)
14: Φ = φpcw ∧ φpcr ∧ φsync ∧ φrw

15: if Φ is not seen before then
16: <tnew , snew> = Solve (Φ)
17: end if
18: if tnew 6= UNSAT and <tnew , snew> is replayed then
19: NTcur = NTcur ∪ tnew

20: end if
21: end for
22: Tcur = NTcur

23: NT = NT ∪NTcur

24: end while
25: return NT

others. For example, if we try to execute (3, r(x)) immedi-
ately after (16, w(x)), we would violate the mutual exclusion
constraints imposed by mutex locks. Therefore, during the
reordering of events, our algorithm has to consider not only
events involved in the target dup but also events transitively
depending on these events. For the example program in
Fig. 1, it means we need to move both events (2, lock) and
(3, r(x)) after (17, unlock).

4.2 Test Suite Augmentation

When a dup ∈ TG cannot be covered by interleavings of
any existing test input, we generate a new test input using
symbolic execution. Algorithm 2 shows the test input gen-
eration procedure, which accepts the following parameters
as input: the modified program P ′, the set T of existing test
inputs, and a to-be-covered DU pair (dup), and returns a set
NT of new test inputs as output. Furthermore, each new
test input is associated with a thread schedule for covering
a previously unreachable DU pair.

We use the to-be-covered dup to guide the computa-
tion of per-thread path condition constraints and inter-
thread ordering constraints. Let bsv denote the branch
that covers a shared-variable access (sv) and bsv denote
the alternative branch; that is, if bsv is a then-branch,
bsv is the corresponding else-branch. Note that bsv does
not have to be the immediate dominator block of sv.
In if(c1){if(c2){read(sv);}}, for instance, the then-
branches of both c1 and c2 can be considered as bsv for the
shared variable access sv.

Initially, the set Tcur is set to be T (Line 1) and NT is
an empty set (Line 2). The procedure starts by reseting the
newly generated input set NTcur (Line 4). It then selects test
inputs from Tcur that can 1) reach bsv , where sv is either a
read (du.r) or a write (du.w) in the dup; and 2) reach both
events in the dup that cannot be flipped by SchedExplorer
(Line 7). If such a test input does not yet exist in Tcur , we use

symbolic execution to generate a new test input by solving
the corresponding symbolic constraints (Lines 11–21).

Our symbolic execution encodes both thread-local path
constraints and inter-thread synchronization and memory
constraints. Specifically, our procedure first computes the
path conditions (pcw and pcr) to reach the branches that
execute both events in the dup (Lines 12-13). There are three
possible cases: 1) neither dup.w nor dup.r is covered, 2)
only one event (dup.w or dup.r) is covered, and 3) both
dup.w and dup.r are covered but their order cannot be
flipped by SchedExplorer. Inside DelNeg(pc, neg), if
an event is covered, neg is set to false; otherwise, neg is set
to true. Inside DelNeg, if neg is true, a new pc is generated
by negating the current branch in pc and removing all
subsequent branches. If neg is false, the new pc is generated
by removing all subsequent branches without negating the
branch. For example, DelNeg(b1∧ b2∧ b3, true) = b1∧ b2.

In addition to computing the path conditions (pcw and
pcr), we obtain ordering constraints for synchronizations
and shared memory accesses (φsync and φrw), which form
the global ordering constraint Φ. During each iteration, if
the constraint Φ has not been decided before, we invoke an
SMT solver to decide it (Line 15). If Φ is satisfiable and the
solver returns a solution <tnew, snew>, which represents a
new test input and the corresponding thread schedule, we
add tnew to the set NTcur of newly generated test inputs.

At the high level, the algorithm iterates through all path
conditions whose execution traces reach the target branch
(Line 11). This allows it to generate more test inputs and
reach predicates following the shared-variable access sv,
which may control additional branches that need to be
covered.

Next, we describe two key steps of the symbolic exe-
cution procedure: symbolic trace collection and constraint
modeling.

4.2.1 Symbolic Trace Collection

Given a test input t, ConTesa first executes P ′ under an arbi-
trary thread schedule to produce an execution trace. As the
symbolic execution proceeds, ConTesa records information
about the control flow, thread synchronization, and shared
memory accesses within each thread. Thus, a symbolic trace
contains the following three types of information.

First, the trace includes a path condition per thread,
which is the sequence of control-flow decisions made in the
thread. Second, the trace includes inter-thread synchroniza-
tions such as lock, unlock, wait, signal, thread fork, and thread
join, together with the synchronization objects (e.g., mutex
locks). Third, the trace includes the read and write accesses
to shared memory. Since the value returned by a global read
depends on the interleaving schedule, we represent it as a
fresh symbolic value. On the other hand, the value written
to a shared-variable may be either symbolic or concrete.

Table 1 shows an example, where Column 1 represents a
concrete execution of the program in Fig. 1 under t1 = {x = 0,
y = -2, z = 0}. Here, we use W t.iv to denote the value written
to v at Line i of thread t, Rt.iv to denote the value read from
v at Line i of thread t, Lt.io to denote the acquisition of lock
o at Line i of thread t, and U t.io to denote the release of lock
o at Line i of thread t. Column 2 represents the control-flow

6
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TABLE 1: The execution trace for Fig. 1 under the test input t1 = {x=0, y=-2, z=0} to cover the target <(5, w(y)), (16, r(y))>.

Concrete trace R1.1y → L1.2lk → R1.3x→ U1.9lk → R1.13z → L2.15 → R2.16y →W 2.16x→ U2.17lk → L2.18lk → R2.19x→ R2.19y
→ U2.21lk

Symbolic trace R1.1y < 0 → L1.2lk → R1.3x ≤ 3 → U1.9lk → R1.13z < 3 → L2.15 → W 2.16x = R2.16y - 1 → U2.17lk → L2.18lk →
R2.19x < 3 → R2.19y 6= 1 → U2.21lk

φpc
W1.5y

R1.1y < 0 ∧ R1.3x ≤ 3 ∧ R1.13z < 3
negate
===⇒ R1.1y < 0 ∧ R1.3x > 3

φpc
R2.16y

R2.19x < 3 ∧ → R2.19y 6= 1 // (16, r(y)) is covered

φsync ((U1.4lk ≺ L2.15lk) ∧ (U1.4lk ≺ L2.18lk) ) ∨ ((U2.17lk ≺ L1.2lk) ∧ (U2.21lk ≺ L1.2lk) ) ∨ ((U2.17lk ≺ L1.2lk) ∧ (U1.4lk
≺ L2.18lk) )

φrw ((R1.1y = y ∧ (R1.1y ≺W 2.20y)) ∨ (R1.1y = W 2.20y ∧ (W 2.20y ≺ R1.1y))) ∧ ((R1.3x = x ∧ (R1.3x ≺W 2.16x)) ∨ (R1.3x
= W 2.16x ∧ (W 2.16x ≺ R1.3x))) ∧ ((R1.5x = x ∧ (R1.5x ≺ W 2.16x)) ∨ (R1.5x = W 2.16x ∧ (W 2.16x ≺ R1.5x)))

Solution to Φ = φpc
W1.5y

∧ φpc
R2.16y

∧φsync∧φrw

tnew = {x = 5, y = -5, z = 0}; snew = R1.1y → L1.2lk → R1.3x → U1.4lk → R1.5x → W 1.5y → L2.15 → R2.16y →
W 2.16x → U2.17lk → L2.18lk → U2.21lk

decision: R1.3x ≤ 3 means the value of x read by Thr1 at
Line 3 is less than or equal to 3.

4.2.2 Constraint Modeling

The ordering constraint Φ encodes thread interactions,
whose solution consists of a set of inputs and a schedule
represented by a sequence of concurrent events. We allow
two types of variables inside Φ: symbolic values returned
by shared-variable reads, and ordering relation (i.e., ≺)
that captures the ordering of global events. Thus, Φ is the
conjunction of three constraints:

Φ = φpath ∧ φsync ∧ φrw,

where φpath encodes the path condition constraints for all
threads, φsync encodes the ordering constraints determined
by synchronizations, and φrw encodes shared-memory con-
straints. Although it is possible to express the various
memory consistency models [3], [13], [25], [34] in a similar
fashion, in this work, we focus on the sequential-consistency
memory only. That is, we assume statements within each
thread are executed in the same order as they appear in the
program.

Path Constraints (φpath). ConTesa collects path constraints
during the symbolic execution of individual threads. For
each thread, it records the outcome of every branching
predicate encountered during the execution. At the end of
the execution, it tries to negate the branching predicate to
cover an event in the target DU pair. If a certain event has
already been covered, ConTesa removes the corresponding
path predicate from consideration. Overall, φpath denotes
the conjunction of path constraints computed across all
threads.

For example, in Table 1, the third row shows the path
condition for the thread to reach the branch of W 1.5y in
the target DU pair. Note that ConTesa negates the condition
of this particular branch; it also removes all the subsequent
path conditions since they may no longer be needed. The
fourth row shows the path condition for the thread to reach
the read event R2.16y in the target DU pair. Since this event
has been covered, all the subsequent path conditions are
also removed.

Synchronization Constraints (φsync). ConTesa collects two
types of synchronization constraints: partial order con-
straints and locking constraints. The partial order con-
straints capture the must-happen-before ordering of oper-
ations from concurrently running threads, such as thread
fork/join and wait/signal operations. For example, all events

executed after the wait must happen after all events before
the corresponding signal operation. In contrast, the locking
constraints coming from lock and unlock operations are mod-
eled differently. Let the lock and unlock operations in thread
Thr1 be represented by L and U , respectively, and the
lock and unlock operations in thread Thr2 be represented
by L’ and U ’, respectively. Then, the locking constraints
involve the following two possible cases. In the first case,
thread Thr1 acquires L first, so U happens before L′. In
the second case, Thr2 acquires the lock first, so U ′ happens
before L. Thus, for each pair of lock-unlock guarded critical
sections, the disjunctive formula that becomes part of φsync

is composed of two constraints, representing the alternation
of the above two cases. In Table 1, specifically, the fifth
row shows the locking constraints for our running example,
which has two lock/unlock pairs in the two threads. In this
table, we use ≺ to denote the must-happen-before ordering
relation between two events.

Read-Write Constraints (φrw). ConTesa also collects the
read-write constraints to model all possible thread interac-
tions through the shared memory. In general, a read from
the shared memory may get the value written by a write
in the same thread, or values written by different threads,
depending on the order of the read and the writes. Thus,
φrw is constructed as follows: for every read operation r

on a variable v, if r is matched to a write w of the same
variable, w must happen before r and there is no other write
between them. In Table 1, for instance, the sixth row shows
a read-write constraint for our running example: if R1.1y

reads directly from the input (Line 1), the write must happen
after the read operation (R1.1y ≺ W 2.20y).

In ConTesa, we invoke an off-the-shelf SMT solver to
compute a solution for each symbolic variable that maps
every read to a certain write on the shared memory under
partial order constraints φsync and φrw. The last column
of Table 1 shows the results. The size of our symbolic
constraint, in the worst case, is linear in the number of
conditional branches and cubic in the number of shared
variable accesses in the execution trace.

4.3 Implementation

We have implemented ConTesa in a software tool that
builds upon a number of open-source platforms. Specif-
ically, we implemented ImpAnalyzer based on Diffutils
and CodeSurfer [20]. We implemented InvSelector in
C++. The SchedExplorer component was built upon the
PIN [37] dynamic instrumentation and analysis framework.

7
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The TestAugmentor component was built upon both PIN
and KLEE [6], a symbolic virtual machine for C/C++.
Specifically, we used KLEE to perform symbolic execution
based test input generation and PIN to enforce the thread
interleaving schedules. We also implemented the trace col-
lection component as an LLVM function pass, which, similar
to the Java front-end of CLAP [25], records a basic-block
trace per thread and then uses the symbolic execution en-
gine in KLEE to generate the entire trace. Although our im-
plementation was based on LLVM, other similar technique
for collecting concrete path profiles and generating symbolic
traces may be used as well.

5 EMPIRICAL STUDY

We aim to answer the following research questions:

RQ1: How effective is ConTesa in augmenting test cases to
complete the interleaving coverage and detect concurrency
bugs in the new program P ′?
RQ2: How efficient is ConTesa in generating new test cases
compared to state-of-the-art test generation tools for concur-
rent software?

5.1 Objects of Analysis

We conducted experiments on thirteen multithreaded
C/C++ applications. Three of the benchmarks, bbuf, swarm
and canneal, are from [27], where bbuf is a reference
implementation of a shared buffer, swarm implements a
parallel sort, and canneal is a parallel implementation of
the simulated annealing algorithm to minimize the routing
cost of a chip design. Among the remaining benchmarks,
pfscan is a multi-threaded file scanner, which combines
the functionality of find, xargs, and fgrep; aget is
a download accelerator that spawns multiple threads to
download different chunks of a file in parallel; pbzip2
is a parallel implementation of bzip2, which does file
compression and file decompression; transmission is a
BitTorrent client software; cherokee is a HTTP server;
memcached is a general-purpose in-memory distributed
caching system, which is designed to speed up websites
by caching commonly requested data to ease back-end
processing and database loads; apache is a web server that
accepts configuration files on both client and server sites,
and multiple main entry points with command line options.
The last three benchmarks are open-source implementations
of lock-free data structures [40].

For each of the benchmark applications, we utilized two
program versions. In each case, the code changes leading
to the modified version contain a real concurrency bug. By
concurrency bug, we mean the program failure is caused
exclusively by incorrectly protected thread interactions as
opposed to errors in the sequential computation. For the
first four and the last three benchmark applications, since
there were no multiple versions available online, we used
the downloaded (and buggy) version as the new program,
and a fixed version as the original program.

Table 2 shows the statistics of these benchmark appli-
cations, containing the name of each application, the two
program versions, the bug sources and types, the number
of lines of non-comment code (NLOC), and the number of

threads. The bugs in the 13 applications involve four dead-
locks, eight order violations, and one atomicity violations.
This also suggests that order violations are more common
than the other types of bugs in these benchmark programs.

To answer the research questions in a statistically signifi-
cant manner, we also need a set of existing inputs in the test
suite. We wish to evaluate the effectiveness and efficiency
of our technique when using test suites of different sizes.
Toward this end, we create N test suites for each benchmark
application, where a test suite consists of M test inputs.
Column 6 of Table 2 lists the number of test inputs (M )
together with the number of test suites (N ), denoted by the
pair (M , N ), indicating there is a total number of M × N

test inputs. We created more test suites and test inputs for
the second set of benchmark programs because they are
larger and more complex compared to the other benchmark
programs. We inserted an assertion statement to the faulty
location of each benchmark program.

Since the benchmark programs are not shipped with
system tests that can test the functionality of the program,
we need to generate tests for them. Specifically, the test in-
puts for bbuf are the number of consumers and producers;
these inputs are randomly generated. For swarm, the test
inputs are randomly generated arrays. For canneal, the
test inputs are randomly generated integers. For pfscan,
the test inputs are strings and files that we created to search
a random string from a randomly chosen file or directory
in each test run. For aget, the test inputs are randomly
chosen files to be downloaded from the Internet specified
by a predefined set of URLs. For pbzip2, the test inputs are
some random files that we compressed a priori with different
combinations of options. For memcached, the test inputs are
chosen from some manually written test cases for perform-
ing operations such as set/get keys and incr/decr keys. For
transmission, the test inputs are randomly downloaded
torrents fed into the program under different configurations.
For cherokee and apache, the test inputs are commands
for issuing a session of requests to a set of static web pages
using httperf under a given configuration. For the three
nbds programs, the test inputs are randomly generated data
fed to different data structures.

Statistics in the last three columns of Table 2 will be
presented later in this section.

5.2 Variables and Measures

5.2.1 Independent Variables

Our independent variable involves are techniques used in
the study. We wish to determine if ConTesa is cost-effective,
and ideally such an assessment involves comparisons with
state-of-the-art tools. However, since there is no prior work
on regression test augmentation (RTA) for concurrent soft-
ware, we instead compare to three somewhat related tech-
niques.

The first technique is Conc-iSE [21], which employs
an incremental symbolic execution algorithm to generate
test inputs and interleaving schedules. However, Conc-iSE
does not reuse test suites for guiding symbolic execution
or schedule exploration, but instead generates all the test
inputs from scratch.

8
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TABLE 2: Characteristics of objects and runtime statistics

Name Version Bug NLOC # Threads Tests % Impact % DUPaff % Cov DUPaff

bbuf
v1 [27] 255
v2 deadlock 257 2 (50, 10) 3 9.1 72.2

swarm v1 [27] 1636
v2 order 1638 5 (50, 10) 4 3.3 65.3

canneal v1 [27] 2822
v2 deadlock 2833 2 (50, 10) 5 3.6 80.9

pfscan v1 [44] 960
v2 deadlock 962 3 (50, 10) 5 2.5 80.2

aget [1] 0.4.1 [67] 850
0.4 atomicity 858 3 (50, 10) 2 3.4 77.5

pbzip2 [5] 1.1.2b3 [67] 3712
1.1.5 order 4069 4 (50, 10) 11 7.9 79.2

cherokee [10] 0.4.0 [67] 20204
0.4.1 order 20430 6 (250, 50) 19 11.4 30.2

memcache 1.4.3 [67] 26550
1.4.4 order 26599 7 (250, 50) 8 8.8 29.5

transmission 1.41 [67] 154264
1.42 order 154393 6 (250, 50) 14 12.4 25.4

apache 2.0.47 [67] 95952
2.0.48 order 97153 6 (250, 50) 21 14.5 31.2

nd-ls [40] v1 [21] 1629
v2 order 1770 5 (50, 10) 6 5.4 72.4

nd-sl [40] v1 [21] 2091
v2 order 2112 5 (50, 10) 4 3.2 78.5

nd-ht [40] v1 [21] 2234
v2 order 2325 5 (50, 10) 5 6.1 71.2

The second technique is Con2colic [17], a tool for gen-
erating test inputs and thread interleavings for concurrent
software. Since the tool is not publicly available, we re-
implemented it in our own framework. A difference be-
tween Con2colic and ConTesa is Conc2colic does not reuse
existing test suites.

The third technique is ReConTest [57], which selects new
interleavings of existing test inputs that contain at least
one of the affected accesses. However, it does not generate
new test inputs. Note that deactivating symbolic execution
of ConTesa does not get ReConTest because ConTesa uses
symbolic execution to generate both new inputs and new
interleavings, whereas ReConTest uses existing test inputs to
explore new interleavings. Since the original ReConTest tool
only handles Java programs, we also re-implemented it to
handle C/C++ applications.

5.2.2 Dependent Variables

Our dependent variables are the metrics chosen to mea-
sure the effectiveness and efficiency of ConTesa and the
other techniques. In terms of effectiveness, we measure,
for the inter-thread DU pairs affected by code changes,
the percentage covered by tests resulting from each of the
aforementioned tools. To account for possible differences in
coverage per execution of the initial test suites, we executed
each object on the various sets of initial test suites, and
calculated the average. We then compared the number of
concurrency failures detected by each tool.

In terms of efficiency, we first measured the average
number of inputs generated by different techniques. We
then measured the total testing time of each tool, together
with a breakdown in terms of the time required for impact
analysis (if any), for generating inputs (if any) and inter-
leaving schedules, and for replaying the program. Finally,
we measured the time it took to detect the fault for each
technique. To account for possible differences in the testing
times per execution of initial test suites, we executed each

object on the various initial test suites and then calculated
the average.

5.3 Study Operation

Column 7 shows the number of DU pairs impacted by
the code changes in modified program versions. Column 8
shows the percentage of the affected DU pairs over all
DU pairs in the program. Column 9 reports the affected
DU pairs covered by the existing test cases. During our
experiments, we set a time-budget of 12 hours for each tool,
which is in line with the use of regression testing in practice
(e.g., nightly-build-and-test). The maximum time for the
solver (i.e., the option --max-solver-time) in KLEE is
set to 300 seconds. For each pair of tool comparisons, we
applied a t-test to the coverage (cost) data and used 0.05
as the confidence level to determine whether there is a
statistically significant difference between two techniques.

6 RESULTS

Table 3 and Table 4 show the results, including the testing
coverage and the number of faults detected by each tech-
nique.

6.1 RQ1: Effectiveness of ConTesa

RQ1 involves the effectiveness of ConTesa in obtaining high
coverage of the affected DU pairs and the related faults.

Coverage. The average test coverage, as measured by the
affected DU pairs, ranges from 71.1% to 100% as shown
in Columns 2-5 of Table 3. For eight benchmark programs,
ConTesa achieved 100% coverage. On nine out of the thir-
teen programs, Conc2colic achieved the same coverage as
ConTesa, but on four larger applications, namely cherokee,
memcache, transmission and apache, ConTesa achieved
significantly higher coverage. When comparing ConTesa to

9
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TABLE 3: Effectiveness of ConTesa compared to three state-of-the-art testing techniques.

Name Testing Coverage (%) Faults Detected
ConTesa Conc-iSE Con2colic ReConTest ConTesa Conc-iSE Con2colic ReConTest

bbuf 100 100 100 100 3 3 3 3

swarm 100 100 100 100 3 3 3 3

canneal 100 100 100 0 3 3 3 7

pfscan 100 100 100 100 3 3 3 3

aget 100 100 100 0 3 3 3 7

pbzip2 89.2 89.2 89.2 58.0 3 3 3 3

cherokee 82.3 70.8 41.4 64.9 3 3 7 7

memcache 88.5 69.4 41.3 68.6 3 3 7 7

transmission 76.5 67.5 45.4 54.7 3 7 7 3

apache 71.1 58.8 34.0 41.3 3 7 7 7

nbds-list 100 100 100 63.2 3 3 3 3

nbds-slist 100 100 100 70.0 3 3 3 7

nbds-htable 100 100 100 71.5 3 3 3 7

TABLE 4: Efficiency of ConTesa compared to three state-of-the-art testing techniques.

Name # Test Inputs Executing Time (seconds) Detection Time (seconds)
ConTesa Conc-iSE Con2colic ReConTest ConTesa Conc-iSE Con2colic ReConTest ConTesa Conc-iSE Con2colic ReConTest

bbuf 0 2 6 0 2.1 3.4 19.5 1.23 1.8 2.5 10.6 1.6
swarm 2 5 8 0 19.5 50.8 1159.2 13.8 11.4 29.4 395.6 10.5
canneal 0 2 5 0 39.4 74.5 99.2 18.3 7.9 32.2 85.5 -
pfscan 0 3 7 0 19.4 91.2 201.1 12.3 12.3 49.2 98.9 10.9

aget 3 4 9 0 209.1 392.4 462.4 121.5 66.3 70.2 101.5 -
pbzip2 3 7 15 0 50.5 80.2 166.2 33.2 28.5 39.5 91.3 19.6
cherokee 6 21 49 0 3059.7 5948.5 > 1198.0 1211.5 2648.8 - -
memcache 21 56 88 0 1542.5 3021.4 > 316.5 682.4 988.9 - -
transmission 19 33 139 0 8482.9 > > 1098.1 2138.4 - - 477.2
apache 16 42 156 0 6704.6 > > 2125.0 4985.6 - - -

nbds-list 2 9 19 0 421.2 692.8 2022.1 102.4 308.4 392.5 1148.7 42.3
nbds-slist 3 12 25 0 322.3 588.6 1674.4 158.2 262.0 407.6 1692.4 -
nbds-htable 3 11 27 0 205.5 386.7 1842.1 144.2 178.3 308.5 1596.6 -

ReConTest, we found that on ten out of the thirteen pro-
grams, ConTesa was significantly better, whereas on three
programs, they were equally effective – this was because
all the affected DU pairs in these three programs could
be exercised by existing test inputs. When comparing Con-
Tesa to Conc-iSE, we found that ConTesa performed better
on four programs: cherokee, memcache, transmission,
and apache, indicating the use of existing test suites can
significantly increase the performance, particularly on large
software.

Fault detection. The numbers of faults detected by ConTesa
and the three competing techniques are shown in Columns
6-9 of Table 3. Specifically, ConTesa detected all of the thirteen
concurrency bugs. For the programs where ConTesa did not
achieve 100% coverage, the reason is due to known limita-
tions of KLEE: for example, in some cases, covering specific
DU pairs requires the program inputs to be hierarchical file
directories, but KLEE models the file system as a flattened
system, where symbolic files can only have pathnames such
as “A”, “B”, and “C” without any hierarchy. Other cases
were due to timeouts KLEE encountered when solving the
hard formulas.

In contrast, Conc-iSE detected eleven, Con2colic detected
nine, and ReConTest detected six. These results indicate that
ConTesa is more effective in detecting concurrency faults
than state-of-the-art techniques.

6.2 RQ2: Efficiency of ConTesa

RQ2 involves the number of generated test inputs and time
taken by ConTesa to obtain high coverage of the affected DU
pairs.
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Fig. 3: Percentage of the running time spent on impact
analysis, schedule exploration, and test case generation.

Columns 2-5 of Table 4 show the the number of test
inputs generated for the four techniques. Overall, ConTesa
generates 61.6% less test inputs than Conc2colic and 85.9%
less test inputs than Con2Colic. Since ReConTest does not
generate new inputs, so the numbers are all 0s.

Columns 6-9 show the total execution time of the four
techniques on achieving the coverage of affected DU pairs.
Overall, ReConTest required the least amount of time be-
cause it does not need to augment test cases. ConTesa was
the second fastest and completed on all thirteen bench-
mark applications. In contrast, Conc-iSE timed out on two
applications and Conc2colic timed out on four applications.
Furthermore, on the nine program for which all techniques
completed, ConTesa was 2.5x to 39.3x faster than Con2Colic,
and 1.5x to 1.9x faster than Conc-iSE. These results indicate
that ConTesa is more efficient. When comparing ConTesa to
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ReConTest, we found that on the six programs in which
ConTesa did not call TestAugmentor, ConTesa required
more time because it needed to generate the symbolic
traces, which introduced extra overhead. On the other five
programs, ConTesa required more time because it invoked
TestAugmentor to generate inputs. But overall, ReCon-
Test achieved 34.4% less coverage and detected 53.8% less
concurrency bugs. Considering the effectiveness of ConTesa,
its additional cost is acceptable.

Figure 3 displays the results regarding the percentage of
time used in running impact analysis, schedule exploration,
and test input generation. Overall, the time for impact anal-
ysis never exceeded 33 seconds, which accounted for only
0.67% of technique runtime overall. The times for schedule
exploration and test case input are 23.8% and 75.5% of the
overall runtime, respectively.

The last four columns of Table 4 show the time spent
on detecting the faults for each technique. The symbol “-
” indicates no faults were detected. On average, on the
11 programs that both ConTesa and Con2Colic detected the
faults, ConTesa was 1.8x faster than Con2Colic to expose
the faults. Compared ConTesa to Con2Colic, ConTesa was 6x
faster. On the six programs in which faults were detected
by both ConTesa and ReConTest, ConTesa was 6x slower than
ReConTest. Again, these results suggest that ConTesa is more
cost-effective than the other three techniques.

6.3 Threats to Validity

The primary threat to external validity is the representa-
tiveness of our objects and test cases, since other objects
and test cases may exhibit different behaviors and cost-
benefit tradeoffs. However, the threat has been significantly
reduced by our use of reputable open-source objects from
a variety of previously published studies, as well as a large
number of initial test suites. The primary threat to internal
validity is possible defects in the implementation of our own
tool as well as the tools we re-implemented to perform the
experimental evaluation on C/C++ applications. We have
been careful in our implementation, used extensive testing
as well as manual inspection to determine the correctness
of the experimental results. In terms of the construct validity,
there are other metrics that could be pertinent to the effects
studied. In particular, our measurements of cost consider
only the execution time of the tool while omitting the time
taken by engineers to use the tool. Our time measurements
also suffer from the potential biases discussed under internal
validity, given the inherent difficulty in obtaining an efficient
tool prototype.

7 SUMMARY AND DISCUSSIONS

7.1 Summary of Results

ConTesa was more effective (in terms of coverage and fault
detection) and efficient (in terms of execution time and
fault detection time) than Conc-ise, Con2colic. Compared
to Con2colic and Conc-ise, the main advantage of ConTesa
is the reuse of existing test inputs for guiding symbolic ex-
ecution, which scales better on large programs. ConTesa was
more effective than ReConTest, because ConTesa augments
existing test inputs to cover more program elements related

TABLE 5: Impact of implementation choices inside ConTesa.

Name BFS Search vs Random Existing vs New Method
Coverage ↑ Time ↓ Coverage ↑ Time ↓

Bbuf = R (4.2%) = E (3.5%)
Swarm = B (6.4%) = E (7.8%)
Canneal = B (6.9%) = E? (5.2%)
Pfscan = B (6.6%) = E? (9.3%)

Aget = B (4.5%) = E? (6.8%)
Pbzip2 = B (8.9%) = E? (4.2%)
Cherokee = B? (5.5%) N? (11.3%) E? (3.2%)
Memcache = B? (6.9%) N? (3.2%) E? (4.2%)
Transmission = B? (3.6%) N? (5.8%) E? (9.7%)
Apache = B? (2.2%) = E? (8.2%)

nbds-list = B (1.2%) = E (2.8%)
nbds-skiplist = B? (3.3%) = E? (2.5%)
nbds-hashtable = B? (2.1%) = E? (1.9%)

to concurrency faults. While ConTesa was less efficient than
ReConTest due to the additional time for generating inputs,
the cost is acceptable considering the benefits of high cover-
age and fault detection rate.

7.2 Discussions

We now explore additional observations relevant to our
study.

Ordering affected program entities. We also investigated,
within ConTesa, the impact of exploring the program enti-
ties in different orders. Specifically, we compared the per-
formance of using the default breadth-first search (BFS)
order with random order. Results of this comparison are
shown in Columns 2 and 3 of Table 5, where the testing
coverage is shown in Column 2 and the testing time is
shown in Column 3. Each entry summarizes the differences
observed: “B” means BFS achieved a greater mean coverage
or faster time, “R” means Random achieved a greater mean
coverage or faster time, and “=“ means the two exhibited
equal mean coverage. The symbols marked as ? mean the
differences were statistically significant. The numbers in the
parentheses indicate the improvements of coverage and the
reductions of the runtime cost.

These results show that, in terms of the testing coverage,
the order of exploration does not significantly affect the
effectiveness of the algorithm. This is reasonable because
the same program elements would ultimately be considered
under any order. However, in terms of the testing time,
the order of exploration does make significant differences.
Our results show that BFS often provides savings in the
execution time. This is because test cases that cover branches
higher in dependency chains would have inputs close to
those used to reach lower branches, thus seeding their
inputs to help ConTesa reach the targets more quickly. Over-
all, BFS seems to be more efficient, but these results do
not preclude other orderings that may be even more cost-
effective.

Existing and new test inputs. We considered two cases
of reusing test inputs in ConTesa: 1) reusing only the ex-
isting test inputs, and 2) reusing both existing and newly-
generated test inputs. The experimental comparison of these
two approaches was shown in Columns 4-5 of Table 5,
where “E” means the first option achieved better results
and “N” means the second option achieved better results.
In terms of testing coverage, the second option is slightly
better, whereas in terms of time, the first option is consis-
tently better.
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The results show that reusing newly generated test in-
puts increases the testing cost, with mostly marginal benefit.
It highlights the tradeoff between achieving higher coverage
and reducing the testing time. Our conjecture is that, on
larger programs, the gain in testing effectiveness may be
worth the slowdown in the testing time.

Effectiveness of existing test inputs. We next discuss how
different existing test suites can affect the effectiveness and
efficiency of ConTesa. We consider four cases: 1) the set of
existing test inputs is empty, 2) the set of existing test inputs
covers all affected DU pairs, 3) the set of existing test inputs
is not empty, but it does not contain any failure-inducing
inputs, and 4) the set of existing test inputs is not empty
and it contains one failure-inducing input and it does not
cover all affected DU pairs.

In the first case, ConTesa and Conc-iSE behave equiva-
lently because ConTesa needs to generate all new test inputs
and interleaving schedules to cover affected DU pairs. In
the second case (an idea case), ConTesa is equal to ReConTest
because both techniques only need to exercise existing test
inputs without generating new inputs or new interleavings
for achieving the coverage.

In the third case, ReConTest would not be able to detect
faults because new test inputs are needed to exercise the
faulty DU pairs. To compare ConTesa with Conc-iSE and
Con2Colic, we removed all failure-inducing inputs from the
test suites generated in our empirical study. The results
showed that ConTesa was still 1.6x faster than Conc-iSE and
5.8x faster than Con2Colic on exposing the faults. This is
because Conc-iSE and Con2Colic required generating new
inputs to to cover the affected DU pairs before reaching the
faulty pair.

In the fourth case, we manually created a failure-
inducing input for each subject and added it to the test
suites. The results showed that ConTesa was much more
faster than Conc-iSE (2.3x) and Con2Colic (6.8x). Because
of the failure-inducing inputs, both ConTesa and ReConTest
detected equal number of faults and ReConTest was 6.2x
faster than ConTesa. However, ConTesa achieved 47.8% more
coverage than ReConTest.

Application of ConTesa. By design, ConTesa is cost-effective
only when the code changes between P and P ′ affects a
small subset of the entire program. If the entire program is
affected, the incremental analysis in ConTesa will degenerate
to the non-incremental one with little advantage over tra-
ditional techniques. Therefore, ConTesa is the most suitable
for development environments where the correctness of
frequent but small code changes is checked before com-
mitted to the repository. In our experiments, 10 out of the
13 applications are developer-made code modifications that
meet the aforementioned criterion: these code modifications
affected 0.3% to 10.3% of the program entities. Therefore,
they reflect at least some real-world software development
scenarios in practice. However, it remains an open question
whether they reflect the vast majority of real-world software
development scenarios.

Interleaving coverage criteria. Interleaving coverage cri-
teria may impact how well ConTesa works. Lu et. all [36]
introduced seven interleaving coverage criteria, which are
designed based on different concurrency fault models. Their

cost ranges from exponential to linear. Study by Hong et
al. [23] also confirmed the effectiveness of concurrency fault
detection can vary depending on such criteria. For the
three baseline tools compared in our work, Conc-iSE does
not measure coverage, Con2colic measures branch coverage,
and ReConTest measures access patterns violating atomic-set
serializability. While ConTesa employs Def-Use criteria by
default, as part of the future work, it is important to inves-
tigate the cost-effectiveness of RTA under other criteria [63]
in the context of regression testing.

8 RELATED WORK

There is a large and growing body of work on testing
concurrent programs [4], [11], [18], [29], [38], [39], [41], [46],
[52], [53], [61], [62], [64], but most existing techniques do not
consider the regression testing of evolving software.

Among the few techniques that target regression testing
for concurrent programs, none of them solves the regres-
sion test augmentation (RTA) problem. SimRT [69] is a test
case selection and prioritization framework for concurrent
programs. However, it does not generate new test inputs or
reduce the interleaving exploration cost inherent in testing.
ReConTest [57] addresses this problem by selecting new
interleavings that arise due to code changes but may miss
accesses not exercised by existing test inputs. Conc-iSE [21]
is an incremental symbolic execution algorithm for concur-
rent software, which leverages execution summaries [22] to
prune away previous explored execution traces. While it is
capable of generating new test inputs and thread schedules,
it does not reuse existing test cases to explore the affected
interleaving space or guide the input generation.

In a position paper we published earlier [68], we en-
visioned a general framework within which regression
test augmentation (RTA) may be implemented for multi-
threaded programs, to reuse existing test suites as well as
generate new test cases. However, the framework was not
yet realized or evaluated. In this work, we developed the
initial idea, implemented what is believed to be the first RTA
tool for multithreaded C/C++ programs, and evaluated it
on a large set of real-world applications.

There are change-impact analysis techniques designed
with a particular focus on multi-threaded programs [9], [26],
[58], [69]. There are also change-impact analysis techniques
for distributed systems [2], [7], [45], [59], [60]. Although
these techniques may result in different costs and benefits,
and in principle, may be leveraged by ConTesa, they do not
address the RTA problems themselves.

There are also testing techniques [12], [38], [63], such
as CHESS, that select and prioritize the interleaving sched-
ules in concurrent software to expose bugs more quickly.
Other techniques have been geared toward systematically
exploring the thread schedules in multi-threaded programs
across program versions [19], [26]. In particular, Gligoric et
al. [19] reuse results from the exploration of one program
version to speed up the exploration of the next program
version. Jagannath et al. [26] use information about program
changes in software evolution to prioritize the exploration
of schedules. These techniques, however, target exploration
of schedules within individual test cases and do not address
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the challenges of regression testing involving large sets of
test cases.

More recently, Deng et al. [14] experimentally studied
how well various existing concurrency fault detection tools
perform for a set of test inputs. They also proposed a
technique that first measures coverage of a program, and
then selects a subset of test inputs to test for data races
and atomicity violations on that program. However, their
technique focuses on a single program version and does not
consider code changes. Also, like SimRT [69] and ReCon-
Test [57], their technique relies on existing test inputs. In
contrast, the main contribution of our work is to leverage the
code changes to more effectively reuse existing test suites as
well as generate new test cases.

At the same time, there are many techniques for test suite
augmentation [8], [43], [50], [56], [65]. Santelices et al. [50]
combines dependence analysis and symbolic execution to
identify chains of data and control dependencies that, if
tested, are likely to exercise the effects of changes. Person
et al. [43] presents a differential technique that uses sym-
bolic execution to identify affected elements more precisely
than [50], and yields constraints that can be input to a solver
to generate test cases for those requirements. However, these
techniques focus only on sequential programs; they are in-
capable of effectively identifying affected concurrency pro-
gram elements or generating inputs or thread interleavings
to exercise concurrency-related new program behaviors.

9 CONCLUSIONS AND FUTURE WORK

We have presented ConTesa, a regression test augmentation
tool for concurrent software, capable of reusing the existing
test suites as well as generating new test cases. It treats the
test input generation and interleaving exploration problems
uniformly, in which new test inputs are generated from test
reuse to guide the exploration of affected interleaving space
not yet covered by existing inputs. It can also replay regres-
sion concurrency faults by leveraging an active scheduler.
We have evaluated ConTesa on a set of multithreaded Linux
applications. Our results show that it outperforms state-of-
the-art techniques in terms of the execution time, testing
coverage, and fault-detection capability.

There are other test case generation techniques that
could be used to address the RTA problem. In this work,
we choose to focus on a dynamic technique that leverages
existing test cases. Other dynamic techniques, such as evo-
lutionary or search-based approaches, are also known to be
effective in addressing RTA for sequential problems [65]; as
part of our future work, we will evaluate these dynamic
test case generation techniques. In addition, we plan to
perform more extensive experiments on additional sets of
benchmark programs.
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